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One-way coupled map lattice system is investigated. An antiphase spatiotemporal period2 stateng

wave, and an alternative type of propagated spatiotemporal on-off intermittency are found. The stability of the
wave is discussed in both stationary frame and comoving frame. They are characterized by conventional
Lyapunov exponent and comoving Lyapunov exponent, respectively. The stability boundaries of this state are
also obtained in the parameter plane. Numerical calculation shows that the propagated spatiotemporal on-off
intermittency has negative Lyapunov exponent. The distribution of the laminar phases for various sites is
calculated numerically. Those sites far from the boundary site obey a power law with power exponent
—3/2. This interesting phenomenon seems to be independent of the choices of local function map.

PACS numbd(s): 05.45+b

[. INTRODUCTION not been given. In this paper we focus our attention on this
interesting parameter region. The boundary condition is cho-
In recent decades, many interesting investigations haveen as(a) the fixed point of local function maps, i.e,

been shifted to the complex spatiotemporal behaviors in th&(0)=1- 1/a, and(b) the above period-2 state. We denote
extended systems in optics, fluid, biology, etc. These systembe spatial periodk state asSk and temporal perioth state
exhibit very rich phenomenology including a wide variety of asTm, thus the spatiotemporal period-2 state is denoted as
both spatial and temporal periodic structures, solitions, travS2T2.
eling waves, domain walls, intermittency, chaos, developed This paper is organized as follows. In Sec. Il, we analyti-
turbulence, etc. Coupled map latticgsMLs), which are in-  cally reveal the existence of the spatiotemporal period-2
troduced as simple models showing the essential features efate, its stability boundaries, and some interesting spa-
spatiotemporal systems, have attracted great interest. Thitemporal bifurcations from this state. In Sec. I, we inves-
CMLs with the nearest-neighbor symmetric coupling hastigate a different type of intermittency, the so called propa-
been most extensively investigat¢di—10. However, re- gated spatiotemporal on-off intermittency. Finally, the
cently the interest in one-way coupled map lattice modelgonclusion is given in Sec. IV.
(OCMLs) has increased11-14. This OCML model is

closely related to physical open flow systems, and therefore, || SPATIOTEMPORAL PERIOD-2 STATE, STABILITY

is important for investigating the behaviors of turbulence, BOUNDARIES, AND BIFURCATIONS
pipe flow, and traffic flow[17,18|. _ _ .
Specifically, the OCML is defined as The S2T2 state is an antiphase state both for time and
space. Thus we assume the state has the form
Xnr1(D)= (1= e)f[xp() ]+ ef[xp(i—1)], i=0,12,...,  (XyX-,x_X;). Then the systenil) becomes
1
@ Xy =(1—-e)f(x_)+ef(x,),
wheren, i, and e are the discrete time step, the lattice site
index, and the coupling coefficient, respectively. The local X_=(1-ef(x;)+ef(x), )

mapping functionf(x) is chosen to be the logistic map
f(x)=ax(1—x), wherea is the nonlinear parameter. Previ-
ous studies in this model often chose a fixed boundary con- 1+a—2ae
dition, i.e., the first sitei(=0) always stays at a fixed point. x,=——+——

In this paper we study two cases of boundary conditions. The 2a(1-2¢)

rg;ults will show a strong dependence on the b_oundary con- J(1+a—2ae)?—4(1—a)(1—e)—8a(l—e)?
dition. The system(1) possesses many interesting features, * .
such as spatial period doubling, comoving instability, and the 2a(1-2¢)

selective amplification of small noigd1-14. The regions (3
for various spatiotemporal patterns were classified in the

phase diagrama( €) [15]. In Ref.[6] Qu and Hu revealed a These solutions exist only in the parameter region
globally stable period-2 running wave for CMLs with diffu-

sion coupling. In Ref[16] this state is also found for open 1 a-3 (4)

; . ) . a=2+ or es—.
systems. However, detailed discussions about this state have 1-2e¢ 2(a—2)

which can be solved as
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When the first site i(=0) is fixed to the fixed point These features are clearly shown in Fig. 1. In Fig. 2 we show
Xn(0)=1-1/a, the behaviors of the several sites near thevarious bifurcations of some sites versasfor a=4. Al-
boundary site are very interesting and complicated. Witithough the sites near the fixed boundary site may manifest
variation ofa and e, these sites may exhibit periodic and different behaviors according to the control parameter, the
chaotic motions. But the deviation of site’s state from thesites far from the fixed boundary site=20) always stay at
S2T2 state exponentially decays as the site index increasethe S2T2 state. As the boundary condition is chosen at this
exact period-2 solution, the above bifurcations disappear, and
the whole system is set at tf82T2 state in the parameter

e PO S A A @) regions of Figs. 1 and 2.
LTRSS USROS S In an open flow system, the instability of a stdte a
o8 b ) pattern can be referred to as the stationary instability and the

comoving instability. The stationary instability is character-

ized by conventional Lyapunov exponents, which can be im-
0.6 mediately found as the eigenvalues of the product of Jacobi

xn (1) B matrices
0.4

1 n
Ai)=In(1—e)+ lim=>, In|f'[x.(i)]l, 5)
noowk=1

0.2

wherei is the lattice site index and the prime denotes the
00 s 1o 15 20 25 0 25 10 45 50 derivative of the function. Due to the fact that the upper
2 . triangle Jacobi matrix elements are zero for the systgm
there is no coupling in the expression ®fi) and theith
(b) exponent characterizes the local motion of ttfe site. For
the S2T2 state, the largest Lyapunov exponent is given as

A=In(1—€)+3In|f"(x )" (x_)], (6)

eI wherex, andx_ are given by Eq(3). If A<0, theS2T2
len(l) o state is stable with respect to the stationary frame. However,

0.a B this stability can’t completely guarantee the state’s stability.
The so-called comoving instability should also be taken into
account. This instability is characterized by the comoving

ozf 1 Lyapunov exponent, which is defined as
. 1 ! i 1 . X i 1 5)( |+ nv )
*0 20 20 60 80 19 L(v,i)= lim Ilim=In n(—[] , @)
7 (i) =0 el OXo(1)
He ) ' ! ' (c) i where[nv] denotes the largest integer equal to or smaller

||lr thannv. L>0 means that the small perturbation of ftle
site can be amplified at time on the sitei +[nv]. Usually,
the comoving Lyapunov exponent is independent of the site.
However, being influenced by the fixed boundary condition,
9-6 1 the comoving Lyapunov exponents of the several sites near
Zn(7) |||| : . the boundary sitei&0) are different from other, but these
0.4 ) exponents quickly tend to the same asymptotic value as the
site index increases. This feature is shown in Fig. 3 at
a=4, and e=0.174. The asymptotic comoving Lyapunov

0.2 exponent of theS2T2 state is given by
1 1 1 £ U f’ X
00 20 a0 s 0 In L(v)=%ln|f'(x+)f’(x_)|+—In‘ ,( +) +(1-v)In(1—e)
i 2 f(x2)
| € vI 1-v? 1| 1+v 8
+oulno+ S in——+3In— (8

FIG. 1. The time-space structure of the system for varioasad
a=4. The boundary condition is chosen as fixed point
X,(0)=1—- 1/a. The boundary condition in the following figures is The derivation of Eq(8) is given in the Appendix. The ex-
the same as Fig. 1 except for Fig.(8) e=0.185.(b) e=0.183.(c) ponent is a function of the propagation velocity. When the
€=0.174. velocity v is
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the comoving Lyapunov exponent takes maximum as
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FIG. 2. The asymptotic state versaor some sites aa=4. (a)
i=2.(b)i=5.(c) i=20.
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FIG. 3. The comoving Lyapunov exponents versufr a=4
ande=0.174.

f(xy)
f'(x-)

1 ! ! UO
Lmac=3In[f" (x ) (x2)|+ ?In

€
+(1-vg)In(l—e€)+voln—
Vo

2
Uo 1_U0 1 1+UO
+7In ] +§Ir‘.l_vo.

(10

As Lax<0, theS2T2 state is absolutely stable in both sta-
tionary (v =0) and the comoving frames. Therefore, neglect-
ing the influence of boundary condition, the stability bound-
aries of theS2T2 state are given by the zero maximum
comoving Lyapunov exponent, i.e,

Lmax=0. (13)

The comoving stability boundaries are shown in Fig. 4 by the
dashed lines. When we change the upper control parameters
by crossing the upper dashed line the system undergoes spa-
tiotemporal intermittency. But when we go down by crossing
the lower dashed line the system undergoes spatial period-
doubling bifurcation along the site-index-increasing direc-
tion. The solid lines in Fig. 4 show the critical stability
boundaries of a propagated spatiotemporal on-off intermit-
tency for the fixed boundary condition. We will discuss this
very interesting phenomenon in the next section. The stabil-
ity region of theS2T2 state depends on boundary condition.
The upper solid line is lower than the dashed one. However,
the lower dashed and solid lines intersect at the parameter
point a~3.925, e~0.144. Asa>3.925, the solid line is
above the dashed one, but the dashed line is above the solid
one for a<<3.925. Therefore, totally, in the case of fixed
boundary condition, the stability region of ti®2T2 state is
margined by the upper solid line, the lower dashed line for
a<3.925, and the lower solid line far>3.925. It is empha-
sized that for fixed boundary condition ti82T2 state may
lose its stability via on-off intermittency even when it is
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A= (A, ,A_) depends on the boundary condition. The decay
exponentB depends on the parametersand e. This expo-

nent can be worked out analytically as follows. First as the
site is far away from the boundary site<0), the deviations

around the period-2 state are very small, and linearization
around this state is valid. In the linear case the margin cer-
tainly maps to margin itself. Therefore, the envelope is a

FIG. 4. The comoving stability boundaries of t82T2 state
(dashed linesand the critical propagated spatiotemporal on-off in-
termittency boundarieésolid lineg in the parameter planea(e).

For the fixed boundary condition, the stability region of B&T2
state is margined by the upper solid lines, the lower dashed line for
a<3.925, and the lower solid one fa>3.925. The stability
boundaries of theS2T2 state is completely given by the dashed
lines for the period-2 boundary condition.

stable in a comoving frame for arbitrary velocity. The reason
is that the chaotic impact from the sites near the boundary
site may totally change the property of the motions of sites
down string far from the left boundary site. In the case of
period-2 boundary condition, the stability boundaries of this
S2T2 state are completely decided by the dashed lines since
there is no chaotic impact from the sites near the boundary
site, and no on-off intermittency appears. The analytic results
are in good agreement with the numerical calculations,
which are shown by the diamonds and pluses. For the
period-2 boundary condition some beautiful and interesting
bifurcations are exhibited in Fig. 5 after tB2T2 state loses

its stability.

Ill. PROPAGATED SPATIOTEMPORAL ON-OFF
INTERMITTENCY

In the fixed boundary condition case, the sites near the
boundary site exhibit periodic or chaotic motiofsee Fig.
1), but the behavior quickly tends to that of tB2T2 state as
the site index is largei &20). Fora=4 ande=0.174, these
near-boundary sites move in two chaotic bands. This two
chaotic bands exponentially decay to tB2T2 quickly as
the distance of the given site from the boundary site in-
creases. The envelope of the whole system is fixed after the
transient proces&@s shown in Fig. L Except for a few sites
near the boundary site, the distances between the envelope
and the corresponding period-2 positions decay exponen-
tially as

Ar(i)=Ae A, (12

0.6

0.4

50 100 150 200 250 300

50 100 150 200 259 300

50 160 150 200 250 300

(4

FIG. 5. The time-space structure of the system der4 and

whereAr(i)=[Ar_(i),Ar_(i)] are theith site’s maximum various ¢ in the case of period-2 boundary conditiofia)
deviations from the period-2 statExy=(X,; ,X_)]. The €=0.155.(b) e=0.147.(c) e=0.141.
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stat_ionary period-4_ state. By inserting H42) into the lin- a(l—e)(1—2x_) —[ae(1—2x,)eP+1]
earized Eq(1), we immediately get [ae(—1—2x_)ef+1] a(l—e)(1—-2x,) |~
(14)
a(l—e)(1—2x_)A_—[ae(1—2x,)e’+1]A, =0,
(13
[ae(1—2x_)ef+1]A_+a(l—e)(1—2x,)A, =0. From the above determinang, can be calculated. Aa=4

SinceA_ andA, are nonzero values, EqL3) leads to the
condition

40 50 60 70 80 90 100

0.0 : 1 o 1 )
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FIG. 7. x,(i) data plotted in 100 iterations a=4 and
FIG. 6. The time evolutions of some sites fa=4 and =0.173. The plotted iterations are from=6300 ton=6400 for
€=0.173.(a) i=2. (b) i=20.(c) i=60. (a), n=7000 ton=7100 for(b), andn=7300 ton= 7400 for(c).
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where, xg= (X, ,X_). P, represents the probability of the

A(9)

_1 1 1 Il 1 1 1 1 1 |

0 10 20 30 40 50 60 70 80 90 100
s
FIG. 8. The Lyapunov exponent versus the site indea-at,
€=0.173.

and e=0.174, we havex, =0.892 503,x_=0.490 932, and
then obtain8~0.45, which is confirmed by numerical calcu-
lations.

As we change the parametesisand € to some critical
values, the behavior of the system suddenly changes. The
exponential decay law is broken. The critical values @fre
0.1737 and 0.1870 faa=4. As € increases over the thresh-
old 0.187, or decreases below the threshold 0.1737, the be-
havior of the third site i(=2) suddenly changes, random
bursts continuously generate from the two chaotic bases
Fig. 6(@]. This is nothing but the characteristic of crisis-
induced intermittency, i.e., a phase transition from local two
chaotic bands to a single chaotic band covering the entire
interval (0,1). Since the system is one-way coupled, these
random bursts generated from the third site quickly propa-
gate to right. The sites far away from the boundary site dis-
play the characteristic of on-off intermittency. They stay at
the period-2 statd"off” state) for a very long time, sud-
denly depart quickly from and then return quickly to the off
state. The time evolutions of sites 20 and 60 are shown in
Figs. 6b) and Gc) for a=4.0 ande=0.173. The features of
on-off intermittency are clear. The propagation feature of
this intermittency is shown in Fig. 7. The moving velocity is
about the order oé. The Lyapunov exponents of the system
are shown in Fig. 8 for the same parameters. It is obvious
that the Lyapunov exponents of the far-distance sites are all
negative at this spatiotemporal on-off intermittency, showing
that theS2T2 state is comovingly stable at the given param-
eters, and the instability is associated to the large scale cha-
otic impact from near-boundary sites.

In order to characterize the statistical property of this spa-
tiotemporal intermittency, we calculate, numerically, the dis-
tribution probabilityP,, of the laminar phases shown in Fig.

9 for some sites aa=4 ande=0.173. A total of 18 itera-
tions of Eq.(1) were computed to obtain these curves. The
threshold for the laminar phase was defined by

1.0

laminar phase of length, namelyP,=M,/N, whereN is

the total number of segments of the laminar phase Mpis

the number of those of length. As a site is far away from

the boundary site, the distribution tends to the asymptotic

distribution, which is characterized by a power law with

power exponent- 3/2 . It is interesting to emphasized that

this critical distribution is “self-organized” from propaga-

tion since the sites near the boundary site, which generates

the bursts, don’t possess this power law behayimr

i =20, the deviation from the- 3/2 power law is already

clearly observed, for<20 the exponential decay law more

and more prevails aisdecreasgs
The critical boundaries of this propagated spatiotemporal

on-off intermittency in the parameter plane are shown in Fig.

4 with solid lines.

0.014
P,
0.001

0.00015

(a)

10

100

1000

1.0

0.14

0.015

0.0014

0.00014

(®)

1.0

10

1000

0.14

0.015

0.0014

0.00015

10

n

100

1000

FIG. 9. The distribution®,, of laminar phases for several sites
at a=4, €=0.173. The solid line is the perfect-3/2 power law
[X(i)=Xo| < 7= 1073, (15 decay.(a) i=20. (b) i =60.(c) i=80.
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First, we have worked out the spatiotemporal period-2 APPENDIX
state in the weak coupling region. This state is anti-phase in
both time and space. Stability of this state has been analyzed Let us consider the evolution induced by a small distur-
in both stationary frame and comoving frame. The convenbance applied on the lattice sitgi.e., 5xy(i), then we have
tional Lyapunov exponent and the comoving Lyapunov ex-for the first iteration,
ponent are solved analytically for tH&2T2 state. The sta-

bility boundaries of this state are obtained. In open flow X1 (1) =(1—e)f" (Xo(i))Xo(i),
systems the comoving Lyapunov exponent plays an impor-
tant role. Sxa(i +1) = et (xo(i)) dxo(i), (A1)

Second, we have found a different type of intermittency in
Fh's systems, the_ S0 calle_d propagated spat|otemp_oral On'Otffc]e others are zero. The second iteration follows as
intermittency. This intermittency is a global behavior of the
extended system. The crisis behavior of the sites near the N et SNNESfe _
boundary site results in this interesting phenomenon. Fur- OXa(i) = (1= €)' (xa (T’ (Xo(i)) Xo(1),
thermore, as the sites are far away from the fixed boundary . _
site, the laminar phases obey uniquely distribution. This disoX2(i +1)=(1—¢€)e[f’ (x1(i +1))f" (Xo(i))
tribution is characterized by a power law with exponent

— 3/2. Bytests with several models we found that all fea- (i) (xo(1))] o), (A2)
tures are independent of the choices of local function map.

They are universal properties. We believe this intermittency SX(i+2)=€*f" (x1(i + 1)) (Xo(i)) 8Xo(i),

can be experimentally verified in the actual physical open

flow systems. the others are zero.

The nth iteration follows as

n—1

Sx,(i)=(1— e)"kljo £ (e 8xo (i),

ct tp P
8x,(i+p)=(1—€)"Pe >, S(Per[(1—€) - (1—€)e - €])

X @1 (e DI Rma(in=2)) - - 1 ey (P (x0(ig)) Bx0 (i),

n-1
6x,,(i+n)=e"k1:[0 F Ol +K)) 8xo(i), (A3)
n—p 14
VS N
the others are zero wher8(Per[(1—¢€) - (1—€)e --€]) is a spatial operator. It represents the site-index permutations

composed oh—p elements * €, andp elementse. CF is the number of permutation combinations. For a given number of
permutation combination, we assutine=i +p, then the operating rule follows.

If the kth element is ¢, theni, =i, ., otherwisei, =i, 1—1.

For example, we taka=4,p=3, thenCi=4. According to the above rule, we have

(1—e)eee:  F'(Xa(i+3))F (Xoli +2))F (X1 (i + 1))F' (Xo(i)),
e(l—e)ee: ' (xa(i+2))F (Xo(i +2))F (X1 (i + 1))F' (Xo(i)),
ce(l—e)er ' (xa(i+2))F (Xo(i + 1))F (X1 (i + 1))F' (Xo(i)),

eee(l—e): T (X3(i+2))f" (Xo(i + 1)) (x1(i))f" (Xo(i)).
Therefore,
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SXa(i+3)=(1=€) €[ (xg(i +3NF’ (Xa(i +2))F" (xy(i + LT’ (Xo())+ ' (Xa(i +2))F" (xa(i +2))F (X (i + 1) (Xo(i))
1 (Xa(1 +2))F (a(i + L) (xq (1 + 1) (Xo())+ ' (Xa(i +2))F" (xo(i + 1) (Xq.(1))F" (Xo(1))]6Xo(1).

In general, it is rather difficult to calculate this summation. However, this summation can be analytically worked out for

some special spatiotemporal patterns. We discuss the comoving Lyapunov exponent for two patterns as follows.
The first pattern is spatial homogeneous and temporal pend®1Tm), i.e., X,(1)=X,(j),Xn+m(i)=X%y(i). Since the
space is homogeneous, each term of the summation is the same one. Thus we have

6xn<i+[vn]>=<1—e)“*[vnle[vnlc[nvnlkﬂ £/ (xi(1)) O%o(i),
=0

m—1

(Ad)

wherev is the disturbance propagation velocity. As-«, by using the stirling formula Im{)~n In(n)—n, we obtain the

comoving Lyapunov exponent

L —1§| F x|+ NS o]
(U)—akzl n|f’ (x| nl—v vin

e(l-v)
v(l—e)’

(A5)

The second pattern is the spatiotemporal period-2 $&8282,(x,x_ ,x_x.)]. The evolution of the small disturbance is

given by

8x,(i-+[on]) = (1= &) Il MLE () ()T B2 S A ()M (x )%

[vn]
(AB)

whereA, is the coefficient of théth term. According to numerical calculatiod, (x. )| is larger tharjf’(x_)|. Therefore, as

n—oo, Eq. (A6) becomes

8Xn(i+[vn])=~(1— )" Ml ML (x ) F7 (x )] MV2AL f (x )M,

(A7)

whereA[vn]=CE1“f[]m],2. Using the stirling formula, we immediately obtain the comoving Lyapunov exponent

f(xy)
f'(x-)

1 v
L(v)=Eln|f’(x+)f’(x_)|+zln

€ U
+(1—v)|n(1—e)+vln;+ =In

1—vzi1| 1+v
2" T2,

(A8)
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