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One-way coupled map lattice system is investigated. An antiphase spatiotemporal period-2 state~a running
wave!, and an alternative type of propagated spatiotemporal on-off intermittency are found. The stability of the
wave is discussed in both stationary frame and comoving frame. They are characterized by conventional
Lyapunov exponent and comoving Lyapunov exponent, respectively. The stability boundaries of this state are
also obtained in the parameter plane. Numerical calculation shows that the propagated spatiotemporal on-off
intermittency has negative Lyapunov exponent. The distribution of the laminar phases for various sites is
calculated numerically. Those sites far from the boundary site obey a power law with power exponent
23/2. This interesting phenomenon seems to be independent of the choices of local function map.

PACS number~s!: 05.45.1b

I. INTRODUCTION

In recent decades, many interesting investigations have
been shifted to the complex spatiotemporal behaviors in the
extended systems in optics, fluid, biology, etc. These systems
exhibit very rich phenomenology including a wide variety of
both spatial and temporal periodic structures, solitions, trav-
eling waves, domain walls, intermittency, chaos, developed
turbulence, etc. Coupled map lattices~CMLs!, which are in-
troduced as simple models showing the essential features of
spatiotemporal systems, have attracted great interest. The
CMLs with the nearest-neighbor symmetric coupling has
been most extensively investigated@1–10#. However, re-
cently the interest in one-way coupled map lattice models
~OCMLs! has increased@11–16#. This OCML model is
closely related to physical open flow systems, and therefore,
is important for investigating the behaviors of turbulence,
pipe flow, and traffic flow@17,18#.

Specifically, the OCML is defined as

xn11~ i !5~12e! f @xn~ i !#1e f @xn~ i21!#, i50,1,2,. . . ,
~1!

wheren, i , ande are the discrete time step, the lattice site
index, and the coupling coefficient, respectively. The local
mapping function f (x) is chosen to be the logistic map
f (x)5ax(12x), wherea is the nonlinear parameter. Previ-
ous studies in this model often chose a fixed boundary con-
dition, i.e., the first site (i50! always stays at a fixed point.
In this paper we study two cases of boundary conditions. The
results will show a strong dependence on the boundary con-
dition. The system~1! possesses many interesting features,
such as spatial period doubling, comoving instability, and the
selective amplification of small noise@11–14#. The regions
for various spatiotemporal patterns were classified in the
phase diagram (a,e) @15#. In Ref. @6# Qu and Hu revealed a
globally stable period-2 running wave for CMLs with diffu-
sion coupling. In Ref.@16# this state is also found for open
systems. However, detailed discussions about this state have

not been given. In this paper we focus our attention on this
interesting parameter region. The boundary condition is cho-
sen as ~a! the fixed point of local function maps, i.e,
x(0)[12 1/a , and~b! the above period-2 state. We denote
the spatial period-k state asSk, and temporal periodm state
asTm, thus the spatiotemporal period-2 state is denoted as
S2T2.

This paper is organized as follows. In Sec. II, we analyti-
cally reveal the existence of the spatiotemporal period-2
state, its stability boundaries, and some interesting spa-
tiotemporal bifurcations from this state. In Sec. III, we inves-
tigate a different type of intermittency, the so called propa-
gated spatiotemporal on-off intermittency. Finally, the
conclusion is given in Sec. IV.

II. SPATIOTEMPORAL PERIOD-2 STATE, STABILITY
BOUNDARIES, AND BIFURCATIONS

The S2T2 state is an antiphase state both for time and
space. Thus we assume the state has the form
(x1x2 ,x2x1). Then the system~1! becomes

x15~12e! f ~x2!1e f ~x1!,

x25~12e! f ~x1!1e f ~x2!, ~2!

which can be solved as

x65
11a22ae

2a~122e!

6
A~11a22ae!224~12a!~12e!28a~12e!2

2a~122e!
.

~3!

These solutions exist only in the parameter region

a>21
1

122e
or e<

a23

2~a22!
. ~4!

PHYSICAL REVIEW E MAY 1996VOLUME 53, NUMBER 5

531063-651X/96/53~5!/4439~8!/$10.00 4439 © 1996 The American Physical Society



When the first site (i50) is fixed to the fixed point
xn(0)5121/a, the behaviors of the several sites near the
boundary site are very interesting and complicated. With
variation of a and e, these sites may exhibit periodic and
chaotic motions. But the deviation of site’s state from the
S2T2 state exponentially decays as the site index increases.

These features are clearly shown in Fig. 1. In Fig. 2 we show
various bifurcations of some sites versuse for a54. Al-
though the sites near the fixed boundary site may manifest
different behaviors according to the control parameter, the
sites far from the fixed boundary site (i>20) always stay at
theS2T2 state. As the boundary condition is chosen at this
exact period-2 solution, the above bifurcations disappear, and
the whole system is set at theS2T2 state in the parameter
regions of Figs. 1 and 2.

In an open flow system, the instability of a state~or a
pattern! can be referred to as the stationary instability and the
comoving instability. The stationary instability is character-
ized by conventional Lyapunov exponents, which can be im-
mediately found as the eigenvalues of the product of Jacobi
matrices

l~ i !5 ln~12e!1 lim
n→`

1

n(k51

n

lnu f 8@xk~ i !#u, ~5!

where i is the lattice site index and the prime denotes the
derivative of the function. Due to the fact that the upper
triangle Jacobi matrix elements are zero for the system~1!,
there is no coupling in the expression ofl( i ) and thei th
exponent characterizes the local motion of thei th site. For
theS2T2 state, the largest Lyapunov exponent is given as

l5 ln~12e!1 1
2 lnu f 8~x1! f 8~x2!u, ~6!

wherex1 and x2 are given by Eq.~3!. If l,0, theS2T2
state is stable with respect to the stationary frame. However,
this stability can’t completely guarantee the state’s stability.
The so-called comoving instability should also be taken into
account. This instability is characterized by the comoving
Lyapunov exponent, which is defined as

L~v,i !5 lim
dx0~ i !→0

lim
n→`

1

n
lnU dxn~ i1@nv# !

dx0~ i !
U, ~7!

where @nv# denotes the largest integer equal to or smaller
thannv. L.0 means that the small perturbation of thei th
site can be amplified at timen on the sitei1@nv#. Usually,
the comoving Lyapunov exponent is independent of the site.
However, being influenced by the fixed boundary condition,
the comoving Lyapunov exponents of the several sites near
the boundary site (i50) are different from other, but these
exponents quickly tend to the same asymptotic value as the
site index increases. This feature is shown in Fig. 3 at
a54, and e50.174. The asymptotic comoving Lyapunov
exponent of theS2T2 state is given by

L~v !5 1
2 lnu f 8~x1! f 8~x2!u1

v
2
lnU f 8~x1!

f 8~x2!
U1~12v !ln~12e!

1v ln
e

v
1
v
2
ln
12v2

4
1 1

2 ln
11v
12v

. ~8!

The derivation of Eq.~8! is given in the Appendix. The ex-
ponent is a function of the propagation velocity. When the
velocity v is

FIG. 1. The time-space structure of the system for variouse and
a54. The boundary condition is chosen as fixed point
xn(0)[12 1/a . The boundary condition in the following figures is
the same as Fig. 1 except for Fig. 5.~a! e50.185.~b! e50.183.~c!
e50.174.
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v0 5F114U f 8~x2!

f 8~x1!
U~12e!2

e2 G21/2

, ~9!

the comoving Lyapunov exponent takes maximum as

Lmax5
1
2 lnu f 8~x1! f 8~x2!u1

v0
2
lnU f 8~x1!

f 8~x2!
U

1~12v0!ln~12e!1v0ln
e

v0

1
v0
2
ln
12v0

2

4
1
1

2
ln
11v0
12v0

. ~10!

As Lmax,0, theS2T2 state is absolutely stable in both sta-
tionary (v50) and the comoving frames. Therefore, neglect-
ing the influence of boundary condition, the stability bound-
aries of theS2T2 state are given by the zero maximum
comoving Lyapunov exponent, i.e,

Lmax50. ~11!

The comoving stability boundaries are shown in Fig. 4 by the
dashed lines. When we change the upper control parameters
by crossing the upper dashed line the system undergoes spa-
tiotemporal intermittency. But when we go down by crossing
the lower dashed line the system undergoes spatial period-
doubling bifurcation along the site-index-increasing direc-
tion. The solid lines in Fig. 4 show the critical stability
boundaries of a propagated spatiotemporal on-off intermit-
tency for the fixed boundary condition. We will discuss this
very interesting phenomenon in the next section. The stabil-
ity region of theS2T2 state depends on boundary condition.
The upper solid line is lower than the dashed one. However,
the lower dashed and solid lines intersect at the parameter
point a'3.925, e'0.144. Asa.3.925, the solid line is
above the dashed one, but the dashed line is above the solid
one for a,3.925. Therefore, totally, in the case of fixed
boundary condition, the stability region of theS2T2 state is
margined by the upper solid line, the lower dashed line for
a,3.925, and the lower solid line fora.3.925. It is empha-
sized that for fixed boundary condition theS2T2 state may
lose its stability via on-off intermittency even when it is

FIG. 2. The asymptotic state versuse for some sites ata54. ~a!
i52. ~b! i55. ~c! i520.

FIG. 3. The comoving Lyapunov exponents versusv for a54
ande50.174.
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stable in a comoving frame for arbitrary velocity. The reason
is that the chaotic impact from the sites near the boundary
site may totally change the property of the motions of sites
down string far from the left boundary site. In the case of
period-2 boundary condition, the stability boundaries of this
S2T2 state are completely decided by the dashed lines since
there is no chaotic impact from the sites near the boundary
site, and no on-off intermittency appears. The analytic results
are in good agreement with the numerical calculations,
which are shown by the diamonds and pluses. For the
period-2 boundary condition some beautiful and interesting
bifurcations are exhibited in Fig. 5 after theS2T2 state loses
its stability.

III. PROPAGATED SPATIOTEMPORAL ON-OFF
INTERMITTENCY

In the fixed boundary condition case, the sites near the
boundary site exhibit periodic or chaotic motions~see Fig.
1!, but the behavior quickly tends to that of theS2T2 state as
the site index is large (i>20). Fora54 ande50.174, these
near-boundary sites move in two chaotic bands. This two
chaotic bands exponentially decay to theS2T2 quickly as
the distance of the given site from the boundary site in-
creases. The envelope of the whole system is fixed after the
transient process~as shown in Fig. 1!. Except for a few sites
near the boundary site, the distances between the envelope
and the corresponding period-2 positions decay exponen-
tially as

Dr ~ i !5Ae2b i , ~12!

whereDr ( i )5@Dr1( i ),Dr2( i )# are thei th site’s maximum
deviations from the period-2 state@x05(x1 ,x2)#. The

A5(A1 ,A2) depends on the boundary condition. The decay
exponentb depends on the parametersa and e. This expo-
nent can be worked out analytically as follows. First as the
site is far away from the boundary site (i50), the deviations
around the period-2 state are very small, and linearization
around this state is valid. In the linear case the margin cer-
tainly maps to margin itself. Therefore, the envelope is a

FIG. 4. The comoving stability boundaries of theS2T2 state
~dashed lines! and the critical propagated spatiotemporal on-off in-
termittency boundaries~solid lines! in the parameter plane (a,e).
For the fixed boundary condition, the stability region of theS2T2
state is margined by the upper solid lines, the lower dashed line for
a,3.925, and the lower solid one fora.3.925. The stability
boundaries of theS2T2 state is completely given by the dashed
lines for the period-2 boundary condition.

FIG. 5. The time-space structure of the system fora54 and
various e in the case of period-2 boundary condition.~a!
e50.155. ~b! e50.147. ~c! e50.141.
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stationary period-4 state. By inserting Eq.~12! into the lin-
earized Eq.~1!, we immediately get

a~12e!~122x2!A22@ae~122x1!eb11#A150,
~13!

@ae~122x2!eb11#A21a~12e!~122x1!A150.

SinceA2 andA1 are nonzero values, Eq.~13! leads to the
condition

U a~12e!~122x2!

@ae~2122x2!eb11#

2@ae~122x1!eb11#
a~12e!~122x1! U50.

~14!

From the above determinant,b can be calculated. Ata54

FIG. 6. The time evolutions of some sites fora54 and
e50.173. ~a! i52. ~b! i520. ~c! i560.

FIG. 7. xn( i ) data plotted in 100 iterations ata54 and
e50.173. The plotted iterations are fromn56300 ton56400 for
~a!, n57000 ton57100 for ~b!, andn57300 ton57400 for ~c!.
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and e50.174, we havex150.892 503,x250.490 932, and
then obtainb'0.45, which is confirmed by numerical calcu-
lations.

As we change the parametersa and e to some critical
values, the behavior of the system suddenly changes. The
exponential decay law is broken. The critical values ofe are
0.1737 and 0.1870 fora54. As e increases over the thresh-
old 0.187, or decreases below the threshold 0.1737, the be-
havior of the third site (i52) suddenly changes, random
bursts continuously generate from the two chaotic bands@see
Fig. 6~a!#. This is nothing but the characteristic of crisis-
induced intermittency, i.e., a phase transition from local two
chaotic bands to a single chaotic band covering the entire
interval ~0,1!. Since the system is one-way coupled, these
random bursts generated from the third site quickly propa-
gate to right. The sites far away from the boundary site dis-
play the characteristic of on-off intermittency. They stay at
the period-2 state~‘‘off’’ state ! for a very long time, sud-
denly depart quickly from and then return quickly to the off
state. The time evolutions of sitesi520 and 60 are shown in
Figs. 6~b! and 6~c! for a54.0 ande50.173. The features of
on-off intermittency are clear. The propagation feature of
this intermittency is shown in Fig. 7. The moving velocity is
about the order ofe. The Lyapunov exponents of the system
are shown in Fig. 8 for the same parameters. It is obvious
that the Lyapunov exponents of the far-distance sites are all
negative at this spatiotemporal on-off intermittency, showing
that theS2T2 state is comovingly stable at the given param-
eters, and the instability is associated to the large scale cha-
otic impact from near-boundary sites.

In order to characterize the statistical property of this spa-
tiotemporal intermittency, we calculate, numerically, the dis-
tribution probabilityPn of the laminar phases shown in Fig.
9 for some sites ata54 ande50.173. A total of 108 itera-
tions of Eq.~1! were computed to obtain these curves. The
threshold for the laminar phase was defined by

ux~ i !2x0u,t51023, ~15!

where, x05(x1 ,x2). Pn represents the probability of the
laminar phase of lengthn, namelyPn5Mn /N, whereN is
the total number of segments of the laminar phase, andMn is
the number of those of lengthn. As a site is far away from
the boundary site, the distribution tends to the asymptotic
distribution, which is characterized by a power law with
power exponent2 3/2 . It is interesting to emphasized that
this critical distribution is ‘‘self-organized’’ from propaga-
tion since the sites near the boundary site, which generates
the bursts, don’t possess this power law behavior~for
i520, the deviation from the2 3/2 power law is already
clearly observed, fori,20 the exponential decay law more
and more prevails asi decreases!.

The critical boundaries of this propagated spatiotemporal
on-off intermittency in the parameter plane are shown in Fig.
4 with solid lines.

FIG. 8. The Lyapunov exponent versus the site index ata54,
e50.173.

FIG. 9. The distributionsPn of laminar phases for several sites
at a54, e50.173. The solid line is the perfect-3/2 power law
decay.~a! i520. ~b! i560. ~c! i580.
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IV. CONCLUSION

One-way coupled map lattice system is closely related to
the physical open flow system. We have studied some inter-
esting dynamical behaviors of this system from both analytic
and numerical calculations.

First, we have worked out the spatiotemporal period-2
state in the weak coupling region. This state is anti-phase in
both time and space. Stability of this state has been analyzed
in both stationary frame and comoving frame. The conven-
tional Lyapunov exponent and the comoving Lyapunov ex-
ponent are solved analytically for theS2T2 state. The sta-
bility boundaries of this state are obtained. In open flow
systems the comoving Lyapunov exponent plays an impor-
tant role.

Second, we have found a different type of intermittency in
this systems, the so called propagated spatiotemporal on-off
intermittency. This intermittency is a global behavior of the
extended system. The crisis behavior of the sites near the
boundary site results in this interesting phenomenon. Fur-
thermore, as the sites are far away from the fixed boundary
site, the laminar phases obey uniquely distribution. This dis-
tribution is characterized by a power law with exponent
2 3/2. By tests with several models we found that all fea-
tures are independent of the choices of local function map.
They are universal properties. We believe this intermittency
can be experimentally verified in the actual physical open
flow systems.

ACKNOWLEDGMENTS

This work was supported partially by the Chinese Natural
Science Foundation, Project Nonlinear Science, and the
Open Laboratories Project of Academia Sinica.

APPENDIX

Let us consider the evolution induced by a small distur-
bance applied on the lattice sitei , i.e.,dx0( i ), then we have
for the first iteration,

dx1~ i !5~12e! f 8„x0~ i !…dx0~ i !,

dx1~ i11!5e f 8„x0~ i !…dx0~ i !, ~A1!

the others are zero. The second iteration follows as

dx2~ i !5~12e!2f 8„x1~ i !…f 8„x0~ i !…dx0~ i !,

dx2~ i11!5~12e!e@ f 8„x1~ i11!…f 8„x0~ i !…

1 f 8„x1~ i !…f 8„x0~ i !…#dx0~ i !, ~A2!

dx2~ i12!5e2f 8„x1~ i11!…f 8„x0~ i !…dx0~ i !,

the others are zero.

The nth iteration follows as

.

~A3!

the others are zero where is a spatial operator. It represents the site-index permutations
composed ofn2p elements 12e, andp elementse. Cn

p is the number of permutation combinations. For a given number of
permutation combination, we assumei n5 i1p, then the operating rule follows.

If the kth element is 12e, then i k5 i k11 , otherwisei k5 i k1121.
For example, we taken54,p53, thenC4

354. According to the above rule, we have

~12e!eee: f 8„x3~ i13!…f 8„x2~ i12!…f 8„x1~ i11!…f 8„x0~ i !…,

e~12e!ee: f 8„x3~ i12!…f 8„x2~ i12!…f 8„x1~ i11!…f 8„x0~ i !…,

ee~12e!e: f 8„x3~ i12!…f 8„x2~ i11!…f 8„x1~ i11!…f 8„x0~ i !…,

eee~12e!: f 8„x3~ i12!…f 8„x2~ i11!…f 8„x1~ i !…f 8„x0~ i !….
Therefore,
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dx4~ i13!5~12e!e3@ f 8„x3~ i13!…f 8„x2~ i12!…f 8„x1~ i11!…f 8„x0~ i !…1 f 8„x3~ i12!…f 8„x2~ i12!…f 8„x1~ i11!…f 8„x0~ i !…

1 f 8„x3~ i12!…f 8„x2~ i11!…f 8„x1~ i11!…f 8„x0~ i !…1 f 8„x3~ i12!…f 8„x2~ i11!…f 8„x1~ i !…f 8„x0~ i !…#dx0~ i !.

In general, it is rather difficult to calculate this summation. However, this summation can be analytically worked out for
some special spatiotemporal patterns. We discuss the comoving Lyapunov exponent for two patterns as follows.

The first pattern is spatial homogeneous and temporal periodm (S1Tm), i.e., xn( i )[xn( j ),xn1m( i )5xn( i ). Since the
space is homogeneous, each term of the summation is the same one. Thus we have

dxn~ i1@vn# !5~12e!n2@vn#e@vn#Cn
@vn# )

k50

m21

f 8„xk~ i !…dx0~ i !, ~A4!

wherev is the disturbance propagation velocity. Asn→`, by using the stirling formula ln(n!)'n ln(n)2n, we obtain the
comoving Lyapunov exponent

L~v !5
1

m(
k51

m

lnu f 8~xk!u1 ln
12e

12v
1v ln

e~12v !

v~12e!
. ~A5!

The second pattern is the spatiotemporal period-2 state@S2T2,(x1x2 ,x2x1)#. The evolution of the small disturbance is
given by

dxn~ i1@vn# !5~12e!n2@vn#e@vn#@ f 8~x1! f 8~x2!#n2@vn#/2(
k50

@vn#

Akf 8~x1!kf 8~x2!@vn#2k, ~A6!

whereAk is the coefficient of thekth term. According to numerical calculation,u f 8(x1)u is larger thanu f 8(x2)u. Therefore, as
n→`, Eq. ~A6! becomes

dxn~ i1@vn# !'~12e!n2@vn#e@vn#@ f 8~x1! f 8~x2!#n2@vn#/2A@vn# f 8~x1!@vn#, ~A7!

whereA@vn#5Cn1@vn#/2
@vn# . Using the stirling formula, we immediately obtain the comoving Lyapunov exponent

L~v !5
1

2
lnu f 8~x1! f 8~x2!u1

v
2
lnU f 8~x1!

f 8~x2!
U1~12v !ln~12e!1v ln

e

v
1
v
2
ln
12v2

4
1
1

2
ln
11v
12v

. ~A8!
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